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1. Introduction

In our previous paper [1], the transformation of worldsheet boundary conditions for non-

linear sigma models under the Poisson-Lie T-plurality [2, 3] was investigated and a formula

for the transformation of gluing matrices was presented there. Boundary conditions were

formulated in terms of a so-called gluing matrix that was subjected to a set of constraints

originally formulated for supersymmetric models in [4, 5]. Abelian T-duality of such mod-

els (and also of their purely bosonic analogues) was studied in [6] and later also partially

extended to Poisson-Lie T-duality context in [7]. Unfortunately, we have shown in [1] that

some of the constraints are not preserved under the Poisson-Lie transformation (even in

the simplest non-Abelian T-duality context).

In this paper we present a restricted set of constraints for the gluing matrix that does

not disqualify the interpretation of corresponding boundary condition in terms of D-branes

and simultaneously preserves its validity under the Poisson-Lie transformations. It means

that well defined D-branes formulated in this way transform into well defined D-branes

again under the Poisson-Lie T-plurality.

The existence of such description was to be expected because there exists a different,

geometric formulation of the same problem based on the geometry of D-branes lifted into

the Drinfel’d double by C. Klimč́ık and P. Ševera in [8, 9]. The open problem was how
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to express their formulation in the language of gluing matrices, i.e., how their boundary

conditions manifest themselves on the level of original σ-models.

The paper is structured as follows. Firstly, we review and modify the formulation

of boundary conditions in terms of gluing matrices (or operators) R. Secondly, we recall

some of the basic properties of Poisson-Lie T-duality and plurality and how the gluing

matrices transform. Thirdly, we demonstrate a few examples we have used in the search

for consistency constraints on R preserved under Poisson-Lie transformations. Next, we

rewrite the constraints on R in an equivalent form suitable for further computations (i.e.

without projectors). Finally, we lift the D-branes into the Drinfel’d double, study how

the boundary conditions manifest themselves there, demonstrate the connection with the

description in [8] and show the invariance of our constraints.

2. Boundary conditions and D-branes

We investigate the boundary conditions for equations of motion of nonlinear sigma models

given by the action1

SF [φ] =

∫

Σ
d2x ∂−φµFµν(φ)∂+φν =

∫

Σ
d2x ∂−φ · F(φ) · ∂+φt (2.1)

where F is a tensor field on a Lie group G and the functions φµ : Σ ⊂ R
2 → R, µ =

1, 2, . . . ,dim G are obtained by the composition φµ = yµ ◦ g of a map g : Σ → G and

components of a coordinate map y of a neighborhood Ug of an element g(x+, x−) ∈ G. For

the purpose of this paper we shall assume that the worldsheet Σ has a topology of a strip

infinite in τ ≡ x++x− direction, Σ = R×〈0, π〉 and x+, x− are light-cone coordinates on Σ.

We impose the boundary conditions for open strings in the form of the gluing operator

R relating left and right derivatives of the field g : Σ → G on the boundary of Σ,

∂−g|σ=0,π = R ∂+g|σ=0,π, σ ≡ x+ − x−. (2.2)

We denote the matrices corresponding to the operator R on TgG in the bases of coordinate

derivatives ∂yµ as R, e.g.,2

∂−φ|σ=0,π = ∂+φ · R|σ=0,π. (2.3)

The explicit form of the operator R in principle yields the embedding of a brane in the

target space which is in this case the Lie group G.

When varying the action (2.1) we shall impose vanishing of boundary terms

δφ · (G · ∂σφt + H · ∂τφt)|σ=0,π = 0, (2.4)

1We use a bit unusual notation that ∂±φµ form row vectors of the derivatives of φ, therefore matrices of

operators in our notation may differ by a transposition from expressions in other papers. The dot denotes

matrix multiplication, t denotes transposition, X−t ≡ (Xt)−1.
2Similarly we shall distinguish operators from their matrices by the calligraphic script used. This does

not apply to tensorial expressions F ,G,H.
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where G and H are symmetric and antisymmetric part of the tensor field F . We shall

assume that the ends of an open string move along a D-brane — submanifold D ⊂ G – so

that both δφ|σ=0,π ∈ TgD and ∂τφ|σ=0,π ∈ TgD. Let N be a projector TgG → TgD so that

δφ|σ=0,π = N (δφ|σ=0,π), ∂τφ|σ=0,π = N (∂τφ|σ=0,π). (2.5)

From eqs. (2.3) and (2.5) we may express the defining properties of N as

N ◦ (R + id) = (R + id), N 2 = N , RanN = Ran (R + id),

i.e.

(R + 1) · N = R + 1, N2 = N, rankN = rank (R + 1). (2.6)

We should stress that these properties do not specify the projector N uniquely since its

kernel is not determined. As it will become clear later on, we may consider all such

projectors equivalent for any sensible use in physics.

We can rewrite the equation (2.4) as

δφ · N · (F · ∂+φt −F t · ∂−φt)|σ=0,π = 0, (2.7)

which after the use of eq. (2.3) becomes

δφ · N · (F − F t · Rt) · ∂+φt|σ=0,π = 0. (2.8)

Because δφ · N and ∂+φt are not further restricted, we find

N · (F − F t · Rt) = 0. (2.9)

Besides that there are conditions for N and R

N µ
κ N ν

λ ∂[µN
ρ

ν]
= 0,

R · G · Rt = G (2.10)

that follow from the condition that the projectors N in all points of G define integrable

distribution and that the stress tensor of the action vanishes on the boundary (see e.g. [1,

6, 10]).

In our previous paper [1], we have used the formulation first presented in [5], i.e. we

have defined D-branes by virtue of Dirichlet projector Q that projects tangent vectors in a

point of G onto the space normal to the D-brane going through this point and the normal

space was identified with the eigenspace of R with the eigenvalue −1, i.e.,

Q2 = Q, Q · R = −Q. (2.11)

The Neumann projector N , which projects onto the tangent space of the brane was then

defined as complementary to Q, i.e.

N := 1− Q.
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The eq. (2.11) is then equivalent to

N2 = N, N · (R + 1) = R + 1.

In order to get an agreement with eq. (2.6) we had to assume that the geometrical and

algebraic multiplicities of the eigenvalue −1 are equal. This gave another condition that

relates R and Q

Q · R = R · Q (2.12)

so that we got the following set of conditions (equivalent to those in [5])

Q2 = Q, Q · R = −Q, rankQ = dim ker (R + 1) (2.13)

Q · R = R · Q, (2.14)

N µ
κ N ν

λ ∂[µN
ρ

ν] = 0, (2.15)

R · G · Rt = G, (2.16)

N · (F − F t · Rt) = 0. (2.17)

We found in our previous work that the constraints for a consistent gluing operator R

derived above are not in general preserved under the Poisson-Lie transformations (see

section 5.2, case (100) in [1]).

The situation improved a bit when we admitted that the endpoints of the string are

electrically charged so that the action must be modified by boundary terms. Such an

extension in the context of Poisson-Lie T-duality of open strings was already introduced

in [8], in the gluing matrix language was firstly mentioned in [5]. We have

SF [φ] → SF [φ] + Sboundary[φ] (2.18)

where

Sboundary[φ] = q0

∫

σ=0
Aµ

∂φµ

∂τ
dτ − q0

∫

σ=π

Aµ
∂φµ

∂τ
dτ (2.19)

corresponds to electrical charges q0,−q0 associated with the two endpoints of the string

interacting with electric field(s) present on the respective D-branes. The condition (2.9) is

then modified to the form [1]

N ·
(
(F + ∆) − (F + ∆)t · Rt

)
= 0, (2.20)

where in local coordinates adapted to the brane3 we have

∆µν =
1

2

(
∂Aν

∂yµ
−

∂Aµ

∂yν

)
, (2.21)

µ, ν ≤ dim(brane) (the remaining components of ∆ do not contribute to the eq. (2.20)). For

computational simplicity we assume that ∆ can be smoothly extended into a neighborhood

of the brane. Because the values of ∆ are physically relevant only along the D-brane we

3i.e., ∂
∂yµ , µ = 1, . . . , dim(brane) are tangential to the brane and the remaining vectors ∂

∂yκ , κ >

dim(brane) are transversal.
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may impose a supplementary restriction on ∆ that fixes its extension into the transversal

directions

∆ = N · ∆ · N t. (2.22)

The exactness of ∆ along the brane (2.21) is locally equivalent to its closeness written in

arbitrary coordinates as

Nκ
νNλ

ρNµ
σ∂[ν∆ρσ] = 0. (2.23)

Unfortunately, neither this generalized formulation of D-branes defined by the gluing op-

erator and interaction with the charges is preserved under the Poisson-Lie T-plurality or

Poisson-Lie T-duality in the sense that there are cases when the set of conditions (2.13)–

(2.16), (2.20) and (2.23) holds for a σ-model with boundary conditions given by R but

not for a model and boundary conditions obtained by the Poisson-Lie transformation (See

section 5.2, case (101) in [1]).

This problem forces us to reconsider the necessity of conditions (2.13)–(2.16). Namely,

motivated by explicit examples in [1] we revisit the condition (2.14). If this condition holds

(as is always the case when G is positive/negative definite but not in general) then there

is a canonical choice of the projector N , namely, such that N is an orthogonal projector

with respect to the metric G. On the other hand, if the condition (2.14) does not hold,

one cannot choose the projector N uniquely and also it is not possible to find the so-

called adapted coordinates [5], i.e. the boundary conditions cannot be split into Dirichlet

and (generalized) Neumann directions. Although such boundary conditions may appear

strange, we don’t see any reason why they should be a priori excluded from consideration.

Moreover, we shall prove that if we relax the condition (2.14) and reformulate the

other ones in such a way that the σ-model with boundary conditions is given by (F ,R,∆)

satisfying

R · G · Rt = G, (2.24)

(R + 1) · N = (R + 1), N2 = N, rankN = rank (R + 1) (2.25)

N µ
κ N ν

λ ∂[µN
ρ

ν] = 0, (2.26)

N ·
(
(F + ∆) − (F + ∆)t · Rt

)
= 0, (2.27)

N · ∆ · N t = ∆, (2.28)

Nκ
νNλ

ρNµ
σ∂[ν∆ρσ] = 0. (2.29)

then these conditions are preserved by the Poisson-Lie transformation.

3. Elements of Poisson-Lie T-plurality and transformation of boundary

conditions

The Poisson-Lie T-plurality was described in many papers (e.g. [2, 3, 11]) and we sketch

here only its main features, mainly to set the notation. The tensor field F on the Lie group

G can be written as

Fµν = eµ
a(g)Fab(g)eν

b(g) (3.1)
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where the vielbeins eµ
a(g) are components of the right-invariant Maurer-Cartan forms

dgg−1 and Fab(g) are matrix elements of bilinear nondegenerate form F (g) on g, the Lie

algebra of G. The action of the σ-model then reads

SF,A[g] =

∫

Σ
d2x ρ−(g) · F (g) · ρ+(g)t +

∫

σ=0
A −

∫

σ=π

A, (3.2)

where the right-invariant vector fields ρ±(g) are given by

ρ±(g)a ≡ (∂±gg−1)a = ∂±φµ eµ
a(g), (∂±gg−1) = ρ±(g) · T = ∂±φ · e(g) · T, (3.3)

Ta are basis elements of the Lie algebra g and A is the 1-form introduced in (2.19).

Similarly, the boundary conditions (2.2) may be expressed in terms of the right-

invariant fields, as

ρ−(g)|σ=0,π = ρ+(g) · Rρ|σ=0,π, (3.4)

where

Rρ = e−1(g) · R · e(g). (3.5)

The σ-models that are transformable under Poisson-Lie T-duality can be formulated

on a Drinfel’d double D ≡ (G|G̃), a Lie group whose Lie algebra d admits a decomposition

d = g
.
+ g̃ into a pair of subalgebras maximally isotropic with respect to a symmetric

ad-invariant nondegenerate bilinear form 〈 . , . 〉. The matrices Fab(g) for the dualizable

σ-models are of the form

F (g) = (E−1
0 + Π(g))−1, Π(g) = b(g) · a(g)−1 = −Π(g)t, (3.6)

where E0 is a constant matrix, Π defines the Poisson structure on the group G, and

a(g), b(g) are submatrices of the adjoint representation of G on d

gTg−1 ≡ Ad(g) ⊲ T = a−1(g) · T, gT̃ g−1 ≡ Ad(g) ⊲ T̃ = bt(g) · T + at(g) · T̃ , (3.7)

where T̃ a are elements of dual basis in the dual algebra g̃, i.e., 〈Ta, T̃ b 〉 = δb
a.

The bulk equations of motion of the dualizable σ-models can be written as Bianchi

identities for the g̃-valued fields

(ρ+)a = −ρ+(g)bF (g)cb(a(g)−1)ca, (ρ−)a = ρ−(g)bF (g)bc(a(g)−1)ca.

These fields can be consequently integrated in terms of suitable h̃ : Σ → G̃,

ρ̃+(h̃)a = (∂+h̃ h̃−1)a = −ρ+(g)bF (g)cb(a(g)−1)ca,

ρ̃+(h̃)a = (∂−h̃ h̃−1)a = ρ−(g)bF (g)bc(a(g)−1)ca. (3.8)

This procedure defines the lift l : Σ → D of the solution g : Σ → G into the Drinfel’d

double. As a consequence, the lift satisfies [2],

〈 ∂±ll−1 , E± 〉 = 0, (3.9)
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where l = gh̃ and E± are two orthogonal subspaces in d, spanned by T +E0 · T̃ , T −Et
0 · T̃ ,

respectively. On the other hand, starting from a solution l in the Drinfel’d double we find

a corresponding solution g by constructing the decomposition l = gh̃.

In general, there are several decompositions (Manin triples) of a Drinfel’d double that

enable to transform one σ-model and its solutions into others. Let ĝ
.
+ ḡ be another

decomposition of the Lie algebra d. The pairs of dual bases of g, g̃ and ĝ, ḡ are related by

the linear transformation (
T

T̃

)
=

(
p q

r s

)(
T̂

T̄

)
, (3.10)

where the duality of both bases requires

(
p q

r s

)−1

=

(
st qt

rt pt

)
, (3.11)

i.e.,

p · st + q · rt = 1,

p · qt + q · pt = 0,

r · st + s · rt = 0.

(3.12)

The σ-model obtained by the plurality transformation is then defined analogously to the

original one, namely by substituting

F̂ (ĝ) = (Ê−1
0 + Π̂(ĝ))−1, Π̂(ĝ) = b̂(ĝ) · â(ĝ)−1 = −Π̂(ĝ)t, (3.13)

Ê0 = (p + E0 · r)
−1 · (q + E0 · s) = (st · E0 − qt) · (pt − rt · E0)

−1 (3.14)

into (3.1), (3.2). Solutions of the two σ-models are related by two possible decompositions

of l ∈ D, namely

l = gh̃ = ĝh̄. (3.15)

For p = s = 0, q = r = 1 we get the so-called Poisson-Lie T-duality where Ĝ = G̃, G′ =

G, Ê0 = E−1
0 . If G is non-Abelian and G̃ is Abelian we call it non-Abelian T-duality.

The corresponding transformation of the gluing matrix Rρ under the Poisson-Lie T-

plurality was found in [1] in the form

R̂ρ = F̂ t(ĝ) · M−1
− · F−t(g) · Rρ(g) · F (g) · M+ · F̂−1(ĝ), (3.16)

where

M+ ≡ s + E0
−1 · q, M− ≡ s − E0

−t · q. (3.17)

An obvious drawback of the formula (3.16) is that the transformed gluing matrix R̂ρ

may depend not only on ĝ but also on g, i.e., after performing the lift into the double

gh̃ = ĝh̄ it may depend on the new dual group elements h̄ ∈ Ḡ, which contradicts any

reasonable geometric interpretation of the transformed boundary conditions. A solution of

this problem is that we admit gluing matrices only in the form

Rρ(g) = F t(g) · C · F−1(g), (3.18)

– 7 –
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where C is a constant matrix.4 Then R̂ρ depends only on ĝ.

The condition (2.24) requiring that Rρ of the form (3.18) preserves the metric then

restricts the form of the matrix C by

C · (E−1
0 + E−t

0 ) · Ct = (E−1
0 + E−t

0 ). (3.19)

It is an easy exercise [1] to show that eq. (3.19) is preserved under the Poisson-Lie trans-

formation (3.16).

4. Examples of three-dimensional σ-models

The conditions (2.24)–(2.29) can be used in the following way. Let us assume that the tensor

F is given. For the given metric G, i.e. symmetric part of F , we find admissible gluing

operators R from eq. (2.24), i.e. operators orthogonal with respect to G. Then the projector

N is determined from eqs. (2.25) and the condition of integrability (2.26) is checked. Finally,

the 2-form ∆ is obtained from (2.27), (2.28) and we check the condition (2.29), namely,

that it is closed on the brane. The same procedure is then repeated for the dual or plural

model with F̂ and R̂ρ given by (3.13) and (3.16).

As an example we shall investigate the Poisson-Lie transformations of the σ-models

formulated on the Drinfel’d doubles D ≡ (G|G̃), where G is the Lie group corresponding

to one of the nine three-dimensional Lie algebras Bianchi 1 - Bianchi 9 (for notation see

e.g. [12]) and G̃ is the Abelian Lie group corresponding to Bianchi 1. We shall denote

these Drinfel’d doubles (X|1) where X is the number of the Bianchi algebra.

The matrix Π vanishes for Abelian G̃ so that F (g) = E0 and

Fµν = eµ
a(g)(E0)ab eν

b(g). (4.1)

We choose the constant matrix E0 as

E0 =




0 0 1

0 1 0

1 0 0


 (4.2)

so that we work with an indefinite metric on G.

Our task is to choose gluing operators R producing ∆ and N that satisfy the con-

ditions (2.24)–(2.29) and check whether the transformed gluing operators R̂ which are

expressed in the non-coordinate frame of the right-invariant fields by (3.16), produce ∆̂

and N̂ satisfying the conditions (2.24)–(2.29) if and only if the original ones do.

The generic solution of eq. (2.24) for E0 given by (4.2) is

Rρ =




β γ − γ2

2β
(α−ǫ)β

γ
α − (α+ǫ)γ

2β

− (α−ǫ)2β

2γ2

1−α2

2γ
(α+ǫ)2

4β


 , (4.3)

4In general, one can admit C dependent on some combinations of coordinates of G that transform by

Poisson-Lie T-plurality to coordinates on bG (see [1]).
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where ǫ = ±1, and α, β, γ are real constants such that β, γ 6= 0 .

Note that the conditions (2.25), (2.27), (2.28) can be calculated even in the non-

coordinate frame where F = E0, therefore Nρ and ∆ρ are independent of G. Moreover,

the condition (2.26) holds for all ranks of N but two and the condition (2.29) holds for all

ranks of N but three on dimensional grounds.

Solving eq. (2.25) for the above given matrix Rρ and ǫ = 1 we get the identity projector

N = id, and for ǫ = −1 we get N = e(g) · Nρ · e(g)−1 where5

Nρ =




n1β2

αγ+γ
+ 1 n2β2

αγ+γ
−

β2(n2β(α−2γ−1)+2(n1β2+αγ+γ))
2(α+1)2γ2

n1β(α−2γ−1)
2(α+1)γ

n2β(α−2γ−1)
2(α+1)γ + 1 −

β(α−2γ−1)(n2β(α−2γ−1)+2(n1β2+αγ+γ))
4(α+1)2γ2

n1 n2
β(−αn2+2γn2+n2−2n1β)

2(α+1)γ


 (4.4)

and n1, n2 are arbitrary constants. The rank of the latter projector is 2.

For ǫ = 1, the condition (2.26) is satisfied trivially as the distribution of tangent vector

spaces of the space filling D-branes is identical with the tangent spaces of the manifold.

The conditions (2.27), (2.28) yield

∆ρ =




0 − 2γ
α+2β+1

α−2β+1
α+2β+1

2γ
α+2β+1 0 − 2(α−1)β

γ(α+2β+1)

−α−2β+1
α+2β+1

2(α−1)β
γ(α+2β+1) 0


 , ∆ = e(g) · ∆ρ · e(g)t. (4.5)

The form of e(g) and therefore also the condition (2.29) depend on G.

The results for ǫ = 1 are:

• For Bianchi 1,2,60, 70 the condition (2.29) is satisfied for any gluing matrix of the

form (4.3).

• For Bianchi 3,4,5,6a, 7a the condition (2.29) is satisfied if and only if α = 1.

If ǫ = −1, the results are:

• For Bianchi 1,5 the condition (2.26) is satisfied for any gluing matrix of the form (4.3).

• For Bianchi 3, 6a the condition (2.26) is satisfied if and only if β = −1, γ = ±2 or

α = γ+2γβ ± 2β
γ∓2β

.

• For Bianchi 60 the condition (2.26) is satisfied if and only if α = 1 + 2β ± 2γ.

• For Bianchi 2, 4, 70, 7a the condition (2.26) is never satisfied.

It is too complicated to check the conditions (2.26) and (2.29) for the simple groups

that correspond to Bianchi 8, 9 and the generic solution of eq. (3.19). Nevertheless, we

5This holds for generic values of α, β, γ. Cases ǫ = 1, α = −1−2β and ǫ = −1, α = 1−2β±4
√−β, α =

−1 when forms of N are different were analyzed separately and the invariance under T-duality was also

confirmed.
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can calculate them at least for a particular gluing matrix

Rρ =




0 0 1
β

0 1 − α
β

β α − α2

2 β


 (4.6)

that is a special solution of eq. (3.19). Solving eq. (2.25) for the above given matrix Rρ we

get the projector

Nρ =




n
β

+ 1 0 n+β
β2

−nα
2β

1 −α(n+β)
2β2

−n 0 −n
β


 , (4.7)

where n is an arbitrary constant. Rank of this projector is 2 so that the condition (2.29)

is satisfied trivially and

• For Bianchi 8 the condition (2.26) is satisfied if and only if α = ±2
√

β2 − 1.

• For Bianchi 9 the condition (2.26) is never satisfied.

4.1 Non-Abelian T-duality

As a next step, we shall investigate the constraints for the dual gluing matrices obtained

by the Poisson-Lie T-duality that interchanges G and G̃. We have proven in [1] that the

so-called conformal condition (2.24) is preserved by the transformation (3.16) so it is not

necessary to check it. For the models on the Drinfel’d doubles (X|1), the Poisson-Lie T-

duality reduces to the non-Abelian T-duality and the gluing matrices of the dual models are

R̂ρ = −F̂ t(ĝ) ·Et
0 ·C ·E−1

0 · F̂−1(ĝ) = −
(
1− E−t

0 · Π̂(ĝ)
)−1

·C ·
(
1 + E−1

0 · Π̂(ĝ)
)

. (4.8)

They depend on the choice of G which determines the matrices Π̂. The projectors N̂ are

obtained from (2.25) and it turns out that the rank of the projector N̂ is independent of

G. For ǫ = 1 it is equal to 2 while for ǫ = −1 it is equal to 3. It means that for ǫ = 1 the

nontrivial condition is (2.26) while for ǫ = −1 it is the condition (2.29).

For the matrix (4.3) and ǫ = 1 we get:

• Bianchi 1,2,60, 70: The condition (2.26) for R̂ is satisfied for any gluing matrix of

the form (4.3).

• Bianchi 3,4,5,6a, 7a: The condition (2.26) for R̂ is satisfied if and only if α = 1.

For the matrix (4.3) and ǫ = −1 we get:

• Bianchi 1,5: The condition (2.29) for R̂ is satisfied for any gluing matrix of the

form (4.3).

• Bianchi 3, 6a: The condition (2.29) for R̂ is satisfied if and only if β = −1, γ = ±2

or α = γ+2γβ ± 2β
γ∓2β

.

• Bianchi 60: The condition (2.29) for R̂ is satisfied if and only if α = 1 + 2β ± 2 γ.
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• Bianchi 2, 4, 70, 7a: The condition (2.29) for R̂ is never satisfied.

For the matrix (4.6) the projectors N̂ obtained from (2.25) have the rank equal to 3

so that the condition (2.26) is satisfied trivially and for:

• Bianchi 8 the condition (2.29) is satisfied if and only if α = ±2
√

β2 − 1.

• Bianchi 9 the condition (2.29) is never satisfied.

Comparing the above given results with those in the previous subsection we see that

the conditions (2.24)–(2.29) are preserved under the non-Abelian T-duality. We have also

checked in examples that the conditions are preserved under the Poisson-Lie T-plurality as

well.

5. Invariance of the constraints for the boundary conditions under the

Poisson-Lie T-plurality

As we have noted in section 2, it is not a priori clear what kind of constraints should be

imposed on the gluing operator R so that on one hand it properly defines the boundary

conditions as D-branes and on the other hand these constraints are preserved under the

Poisson-Lie T-plurality. The examples in the previous section indicate that we may have

managed to establish the right set of constraints, namely (2.24)–(2.29). We have shown

in [1] that (2.24) is preserved under Poisson-Lie T-plurality. It remains to be shown that

the others are invariant under the Poisson-Lie transformations as well.

5.1 An alternative formulation of the consistency conditions on the gluing op-

erator

As it is difficult to find the Poisson-Lie transformation of the projector N it is convenient

to reformulate the conditions (2.25)–(2.29) without its explicit use, i.e., using the gluing

operator R only. This will also prove that the conditions (2.25)–(2.29) do not depend on the

non-unique choice of the projector N and that we don’t have to impose the condition (2.28).

For this purpose we recall eq. (2.6)

RanN = Ran (R + id)

which means that any condition of the form

A ◦ N = 0, i.e., N · A = 0

can be equivalently written as

A ◦ (R + id) = 0, i.e., (R + 1) · A = 0.

Consequently, the condition (2.27) can be equivalently written as

(R + 1) ·
(
(F + ∆) − (F + ∆)t · Rt

)
= 0. (5.1)
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Similarly, the condition (2.29), which when expressed in the basis-free form reads

d∆(N (X),N (Y ),N (Z)) = 0, ∀X,Y,Z ∈ TgD,

can be equivalently written as

(R + 1)κ
ν(R + 1)λ

ρ(R + 1)µ
σ∂[ν∆ρσ] = 0. (5.2)

Besides that, we recall that the condition (2.26) is just a statement that the distribution

(of non-constant dimension)

Λ : g ∈ G → Ran (R + id)|g ⊆ TgG

is in involution,

[Λ,Λ] ⊆ Λ (5.3)

and consequently by Frobenius Theorem completely integrable. Such a statement is obvi-

ously independent of the particular choice of the projector N (although it doesn’t have the

nice form 0 = . . . of eq. (2.26)).

Finally, we look for the the 2-form ∆. We notice that by virtue of eq. (2.24) the matrix

(R + 1) ·
(
F − F t · Rt

)

is skew-symmetric and consequently has the form

(R + 1) · M · (R + 1)t

for some antisymmetric matrix M related to F , R (and, in general, non-unique). Therefore,

the condition (5.1) takes the form

(R + 1) · (∆ + M) · (R + 1)t = 0 (5.4)

and, when considered as an equation for ∆, has a solution, e.g. ∆ = −M .

Moreover, we can show that the condition (5.2) doesn’t depend on the particular choice

of a solution of the equation (5.4). It suffices to consider

Υ = (R + 1) · ∆ · (R + 1)t = (R + 1) ·
(
F t · Rt −F

)

and compute the expression

∂ϑΥ[µν(R + 1)λ]
ϑ

using the two ways of expressing Υ. Due to the integrability condition (5.3) written in

terms of generators (R + 1)ν
σ∂σ of the distribution Λ there exist functions γµν

κ such that

∂ϑ(R + 1)[ν
σ(R + 1)µ]

ϑ = γµν
κ(R + 1)κ

σ.

Using this fact one finds by comparison of different expressions for ∂ϑΥ[µν(R + 1)λ]
ϑ that

(R + 1)[µ
ρ(R + 1)ν

σ(R + 1)λ]
ϑ∂ϑ∆ρσ =

∂ϑ

(
F t · Rt −F

)
ρ[ν

(R + 1)µ
ρ(R + 1)λ]

ϑ −
(
F t · Rt −F

)
ρ[ν

∂

∂yϑ
(R + 1)µ

ρ(R + 1)λ]
ϑ

– 12 –
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(note that index ϑ in ∂
∂yϑ ≡ ∂ϑ is not antisymmetrized, the antisymmetrization on the right

hand side involves µ, ν, λ only).

To sum up, we have found that an equivalent formulation of the condition (5.2) which

doesn’t depend on the particular choice of ∆ exists and has the form

∂ϑ

(
F t · Rt −F

)
ρ[ν

(R + 1)µ
ρ(R + 1)λ]

ϑ −
(
F t · Rt −F

)
ρ[ν

∂

∂yϑ
(R + 1)µ

ρ(R + 1)λ]
ϑ = 0.

(5.5)

We mention that although the functions γµν
κ do not appear in the final expression their

existence was important in intermediate steps, i.e. the conditions (5.2) and (5.5) are equiv-

alent only if the integrability condition (5.3) holds.

Watchful reader may notice that we have not imposed the condition (2.28) yet. This

condition restricts the field strength ∆ only to the physically relevant degrees of freedom

and it is reasonable to apply it from this viewpoint. On the other hand, it requires the

knowledge of the explicit form of the projector N which we want to avoid. Under the

assumption that the conditions (5.3), (5.5) hold we take any projector N and any ∆

satisfying (5.1) and construct

∆̃ = N · ∆ · N t

which also satisfies the conditions (5.1), (5.2) and in addition it satisfies the condition (2.28).

The influence of ∆ and ∆̃ on the motion of strings, i.e. extrema of the action (2.18), is

exactly the same. Therefore we may consider ∆ and ∆̃ physically equivalent and forget

the condition (2.28) altogether.

In summary we may write all conditions defining a consistent gluing operator R as

R · G · Rt = G, (5.6)

[Λ,Λ] ⊆ Λ, Λ(g) = Ran(R + id)|g , (5.7)

∂ϑ

(
F t · Rt −F

)
ρ[ν

(R + 1)µ
ρ(R + 1)λ]

ϑ−

−
(
F t · Rt −F

)
ρ[ν

∂

∂yϑ
(R + 1)µ

ρ(R + 1)λ]
ϑ = 0. (5.8)

Given such an operator R we can find the field strength ∆ (using eq. (5.1)) and the projector

N such that conditions (2.24)–(2.29) hold. Both N and ∆ are in general non-unique but

lead to the same dynamics of the strings on the classical level, i.e., the extrema of the

action (2.18).

5.2 Lift of D-branes to the Drinfel’d double

We can define the lift of a D-brane D ⊂ G given by (2.3) to the Drinfel’d double as an

integral manifold of the distribution generated by

∂τ l|σ=0,π = ∂−l|σ=0,π + ∂+l|σ=0,π. (5.9)

From l = gh̃, (3.8) and (3.7) we get

∂τ l l−1 = (ρ−(g) + ρ+(g)) · T + (ρ̃−(h̃) + ρ̃+(h̃)) · Ad(g)(T̃ )

= (ρ−(g) + ρ+(g)) · T + (ρ−(g) · F (g) − ρ+(g) · F t(g))(a−t(g) · bt(g) · T + T̃ )
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On the boundary we get from (3.4), (3.6) and (3.18)

∂τ l l−1|σ=0,π = ρ+(g)|σ=0,π · F t(g) ·

[(F−t(g) + C · F−t(g)) · T + (C − 1) · (a−t(g) · bt(g) · T + T̃ )]

= ρ+(g)|σ=0,π · F t(g) · [(E−t
0 + C · E−1

0 ) · T + (C − 1) · T̃ ] (5.10)

As ρ+(g)|σ=0,π is arbitrary and F (g) is invertible we see that the vectors tangent to the

lifted D-branes pulled to the unit of the Drinfel’d double form the vector subspace VD of d

VD = span(AabTb + Ba
bT̃

b), (5.11)

where the matrices A and B are

A = E−t
0 + C · E−1

0 , B = C − 1. (5.12)

This subspace is isotropic because

〈(A · T + B · T̃ )t, A · T + B · T̃ 〉 = C · E−t
0 · Ct − E−t

0 + C · E−1
0 · Ct − E−1

0 = 0 (5.13)

due to (3.19). Moreover one can see that the subspace is maximally isotropic as the block

matrix (
A

B

)
=

(
E−t

0 + C · E−1
0

C − 1

)
(5.14)

has the same rank as the block matrix
(

E−t
0 + E−1

0

C − 1

)
, (5.15)

whose rank is dim g, because E−t
0 + E−1

0 = E−1
0 · (E0 + Et

0) · E
−t
0 = E−1

0 · G(e) · E−t
0 is an

invertible matrix.

The space VD is invariant under the Poisson-Lie transformation by construction, nev-

ertheless, one may check it directly from the transformation properties of T, T̃ , E0 and C.

We shall show that the condition (5.8) for admissible gluing matrix R is equivalent to a

statement that the isotropic subspace VD is also a subalgebra.

First of all we shall rewrite the matrices occurring in (5.8) in terms of the matri-

ces (5.12) defining the space VD.

R + 1 = F t · (Ac + Bc · Πc), F t · Rt −F = Bc
t · F , (5.16)

where

Ac = e−t(g) · A · e−1(g), Bc = e−t(g) · B · et(g), Πc = e−t(g) · Π(g) · e−1(g). (5.17)

The condition (5.8) then acquires the form

[
F t · (Ac + Bc · Πc)

]
[λ

ρ [
F t ·

(
Ac · ∂ρBc

t − ∂ρAc · Bc
t − Bc · ∂ρΠc · Bc

t
)
· F

]
µν]

= 0.

(5.18)
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(Many terms occurring during derivation of this expression cancel by total antisymmetriza-

tion in λ, µ, ν.) Using (3.1) and the fact that both e(g) and F (g) are invertible we can

simplify the above equation to

[(A + B · Π(g)) · e−1(g)][aρ
([

2 (A + B · Π(g)) · e−1(g) · ∂ρe(g) − B · ∂ρΠ(g)
]
· Bt

)bc]
= 0.

(5.19)

(The antisymmetrization involves only the indices a, b, c.) For the derivatives of e we can

use Maurer-Cartan equations, and derivatives of Π(g) are

∂ρΠ
ik = −(a−1)j

i
f̃ jm

n
L
eρ

n(a−1)m
k
, (5.20)

where
L
eµ

n are components of the left-invariant form
L
e (g) = e(g) · a(g). All that gives

(A + B · Π(g))[ai
[
fij

k(A + B · Π(g))bjBc]
k + ai

r(g)f̃ jk
r (B · a−t(g))bj(B · a−t(g))c]k

]
= 0.

(5.21)

(where we again antisymmetrize in a, b, c only). We define a mixed product on the Drinfel’d

double

〈〈 X,Y,Z 〉〉 := 〈 [X,Y ], Z 〉. (5.22)

It is totally antisymmetric and Ad-invariant. In terms of this mixed product we can write

the above condition as

〈〈 (A · T + B · Π(g) · T )[a , (A · T − B · Π(g) · T + B · T̃ )b , (B · T̃ )c] 〉〉 = 0. (5.23)

The antisymmetry of the mixed product and antisymmetrization in indices a, b, c imply

〈〈 X [a, Y b, Zc] 〉〉 = 〈〈 X [a, Zb, Y c] 〉〉 = 〈〈 Z [a,Xb, Y c] 〉〉 (5.24)

that allows to rewrite the left-hand side of (5.23) as

〈〈 (A · T )[a , (A · T )b , (B · T̃ )c] 〉〉 + 〈〈 (A · T )[a , (B · T̃ )b , (B · T̃ )c] 〉〉

−〈〈(B · Π(g) · T )[a , (B · Π(g) · T )b , (B · T̃ )c]〉〉 + 〈〈(B · Π(g) · T )[a , (B · T̃ )b , (B · T̃ )c]〉〉.

The last two terms drop out by isotropy of the subalgebra g̃ because they are equal to

−
1

3
〈〈(B · Π(g) · T − B · T̃ )[a , (B · Π(g) · T − B · T̃ )b , (B · Π(g) · T − B · T̃ )c]〉〉

=
1

3
〈〈 (B · a−t(g) · T̃ )[a , (B · a−t(g) · T̃ )b , (B · a−t(g) · T̃ )c] 〉〉 = 0.

The first two terms give

1

3
〈〈 (A · T + B · T̃ )[a , (A · T + B · T̃ )b , (A · T + B · T̃ )c] 〉〉 = 0 (5.25)

and we can drop the antisymmetrization because of antisymmetry of (5.22). Then eq. (5.25)

becomes exactly the statement that the maximal isotropic subspace VD is a subalgebra of

the Drinfel’d double, i.e., that for any v1, v2, v3 ∈ VD we have

〈〈 v1, v2, v3 〉〉 = 0.
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To sum up, we conclude that the condition (5.8) is in the case of Poisson-Lie dual-

izable models equivalent to the statement that the maximally isotropic subspace VD is a

subalgebra. Therefore, the condition (5.8) is Poisson-Lie invariant.

We also see that the lifts of D-branes into the Drinfel’d double D acquire the form

of cosets Dl where D is the Lie subgroup of D with Lie algebra VD and l ∈ D. This

demonstrates that the gluing matrix formalism naturally leads to D-branes in Drinfel’d

double as devised by C. Klimč́ık and P. Ševera in [8]. Obviously, the D-brane in Drinfel’d

double Dl is an embedded submanifold of D whenever the condition (5.8) is satisfied,

irrespective of the condition (5.7). That leads us to a natural hypothesis that in our case

of dualizable gluing operators the distribution Λ : g ∈ G → Ran (R+ id)|g is integrable by

virtue of the condition (5.8) alone.

In order to show that the distribution Λ is integrable we define a coset projection map

π : D → G : l = gh̃ 7→ g.

The D-brane in G passing through g0 is then obtained as π(Dg0h̃0) for some h̃0 ∈ G̃

provided that it is well-defined. That it is indeed so can be seen from the fact that for any

l, l′ ∈ D such that π(l) = π(l′) we obviously have

π ◦ Rl = π ◦ Rl′ (5.26)

and consequently for any Dl1, Dl2 such that π(Dl1)∩π(Dl2) 6= ∅ we find that intersecting D-

branes in G coincide, i.e. π(Dl1) = π(Dl2), and are submanifolds. Consequently, {π(Dl)|l ∈

D} form a foliation (of non-constant dimension) of the group G and the distribution Λ

consisting of tangent spaces to this foliation is by definition integrable.

For a more explicit derivation it is sufficient to consider a basis of right-invariant vector

fields on D extended from a basis (ek(e)) of VD by

ek(l) = (Rl)∗ek(e)

and project them by π∗

Ek(g) = π∗ek(gh̃).

Such Ek are well-defined vector fields on G, i.e. don’t depend on the choice of h̃, due

to eq. (5.26), and define the distribution Λ|g = span{Ek(g)} by construction of the lift.

Because ek close under the commutator, also Ek do so due to π∗([ej , ek]) = [π∗(ej), π∗(ek)]

and consequently the distribution Λ is integrable.

A further question arises concerning the generality of our description, i.e. whether any

D-brane configuration described in the language of [8] can be expressed in terms of gluing

matrices. Let us suppose that we are given an arbitrary maximally isotropic subalgebra

VD of the Drinfel’d double algebra d, i.e.

VD = span{KabTb + La
bT̃

b}

where K,L are arbitrary matrices such that

K · Lt + L · Kt = 0
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and rank (K,L) = dim G. Does a matrix C exist such that there is an equivalent description

VD = span{AabTb + Ba
bT̃

b}

where

A = E−t
0 + C · E−1

0 , B = C − 1 ?

The answer is positive provided L−K ·E−1
0 is regular (invertible) matrix. Indeed, we are

looking for an invertible matrix S such that S · L = A, S · K = B. We find

S =
(
E−t

0 + E−t
0

)
·
(
L − K · E−1

0

)−1
,

and

C =
(
E−t

0 + E−t
0

)
·
(
L − K · E−1

0

)−1
· K + 1.

Such matrix C satisfies the condition (3.19). The singular case when C doesn’t exist

and we cannot use the description based on gluing matrices occurs if and only if there is

v ∈ VD, v 6= 0 such that 〈v, E−〉 = 0, i.e.,

v ∈ VD ∩ E+ 6= 0. (5.27)

This is rather exceptional since both VD and E+ are (dim G)-dimensional subspaces in

(2 dim G)-dimensional vector space d.

6. Conclusions

We have revisited the bosonic version of conditions (2.13)–(2.17) formulated in [5] for the

gluing matrices defining boundary conditions for open strings. We have investigated them

from the point of view of their invariance under the Poisson-Lie transformations defined

by the formulas (3.13), (3.14) and (3.16).

We have seen that in order to keep the conditions invariant under the Poisson-Lie

transformations, it is necessary to introduce the electromagnetic field ∆ on the D-branes

where the boundary conditions are imposed as in [8]. Besides that we have relaxed the

condition (2.14) for the so-called Dirichlet projector Q that projects onto the space normal

to the D-brane as it is not invariant under the Poisson-Lie transformations. We suggest that

the proper set of constraints for the gluing matrices is (2.24)–(2.29). The invariance of these

constraints under the Poisson-Lie transformations was firstly checked in many examples;

some of them were presented in section 4. The invariance was proved in section 5.

Of course, one may imagine also other possible generalizations of the conditions (2.13)–

(2.17). One possible approach (in supersymmetric setting) appeared in [14] where the con-

dition (2.16) was not strictly enforced whereas the splitting into Dirichlet and Neumann

directions due to (2.13)–(2.14) was retained (together with a stringent restriction R2 = 1).

However, that paper dealt with Abelian T-duality only. In the context of Poisson-Lie

T-duality it seems that the condition (2.16), i.e. (2.24), has a natural geometric interpre-

tation, namely the isotropy of lifted D-branes (5.13), and it was essential in most of our

derivations. That’s why we consider it indispensable in our setting. The condition (2.26)
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is an integrability statement, needed for interpretation of D-branes as submanifolds. The

conditions (2.27), (2.29) are equivalent to the vanishing of the boundary term in the vari-

ation of action (3.2) and as such are also necessary (as long as one keeps the action in the

form (3.2)). The condition (2.28) restricts the field strength ∆ to a specific choice from

a physically equivalent set — the physics is not at all influenced by it but it is useful for

the uniqueness of ∆. To sum up we believe that all the conditions (2.24)–(2.29) should be

imposed in Poisson-Lie T-duality context.

To prove the Poisson-Lie invariance of the constraints (2.24)–(2.29) it was necessary to

reformulate them to the form (5.6)–(5.8) that does not contain the (non-unique) projector

N . In the end it turned out that the constraints for the gluing matrices

Rρ(g) = F t(g) · C · F−1(g), (6.1)

where C is a constant matrix which satisfies

C · (E−1
0 + E−t

0 ) · Ct = (E−1
0 + E−t

0 ), (6.2)

are equivalent to the condition that the subspace

VD = span
((

E−t
0 + C · E−1

0

)
· T + (C − 1) · T̃

)
(6.3)

is a maximally isotropic subalgebra. This statement is clearly invariant under the Poisson-

Lie transformations because the choice of VD is independent of the decomposition of the

Lie algebra of the Drinfel’d double into the sum of the isotropic subalgebras (Manin triple).

On the other hand, if VD is a maximally isotropic subalgebra and

VD ∩ E+ = 0

then there is a unique matrix C such that VD can be written in the form (6.3) and the

condition (6.2) is satisfied. The gluing matrix (6.1) then satisfies the consistency condi-

tions (5.6)–(5.8) or equivalently (2.24)–(2.29) where the suitable field strength ∆ is found

as a solution of

(R + 1) · ∆ · (R + 1)t = (R + 1) ·
(
F t · Rt −F

)

and the projector N is defined by eq. (2.5).

This means that we have shown that the current version of the formulation of trans-

formable boundary conditions in terms of gluing matrices is equivalent to the description

originally discovered by C. Klimč́ık and P. Ševera in [8]. Both approaches can be considered

complementary. In their original formulation the invariance of the description is clear from

its geometric formulation in the Drinfel’d double and also some of the geometric properties

of the lifted D-branes are immediately obvious. However, it may be quite tedious to work

out the explicit form of the boundary conditions in the σ-models on the groups G, Ĝ. (e.g.

in the original paper [8] only the Poisson-Lie T-duals of free boundary conditions were

worked out in any detail. More complicated D-branes in WZW models found in this way

were given in [13].) On the other hand, in our approach these are easy to write down
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but it required some calculation to show that both the original and transformed boundary

conditions satisfy the same consistency requirements (5.6)–(5.8).

Finally, we would like to recall that we have expressed the conditions on gluing matrix

in a form independent of the projector N , i.e. (5.6)–(5.8), and that this derivation does

not depend at all on the particular structure of Poisson-Lie transformable models or on

the fact that we consider group targets. We believe that this formulation may be of use

also in other investigations of the properties of gluing matrices.
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[9] C. Klimč́ık and P. Ševera, Open strings and D-branes in WZNW models, Nucl. Phys. B 488

(1997) 653 [hep-th/9609112].

[10] S. Stanciu, D-branes in group manifolds, JHEP 01 (2000) 025 [hep-th/9909163].

[11] E. Tyurin and R. von Unge, Poisson-Lie T-duality: the path-integral derivation, Phys. Lett.

B 382 (1996) 233 [hep-th/9512025].

[12] L. Snobl and L. Hlavaty, Classification of 6-dimensional real Drinfeld doubles, Int. J. Mod.

Phys. A 17 (2002) 4043 [math.0202210/].
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